Drosophila Erect wing (Ewg) controls mitochondrial fusion during muscle growth and maintenance by regulation of the Opa1-like gene.

نویسندگان

  • Mamta Rai
  • Prasanna Katti
  • Upendra Nongthomba
چکیده

Mitochondrial biogenesis and morphological changes are associated with tissue-specific functional demand, but the factors and pathways that regulate these processes have not been completely identified. A lack of mitochondrial fusion has been implicated in various developmental and pathological defects. The spatiotemporal regulation of mitochondrial fusion in a tissue such as muscle is not well understood. Here, we show in Drosophila indirect flight muscles (IFMs) that the nuclear-encoded mitochondrial inner membrane fusion gene, Opa1-like, is regulated in a spatiotemporal fashion by the transcription factor/co-activator Erect wing (Ewg). In IFMs null for Ewg, mitochondria undergo mitophagy and/or autophagy accompanied by reduced mitochondrial functioning and muscle degeneration. By following the dynamics of mitochondrial growth and shape in IFMs, we found that mitochondria grow extensively and fuse during late pupal development to form the large tubular mitochondria. Our evidence shows that Ewg expression during early IFM development is sufficient to upregulate Opa1-like, which itself is a requisite for both late pupal mitochondrial fusion and muscle maintenance. Concomitantly, by knocking down Opa1-like during early muscle development, we show that it is important for mitochondrial fusion, muscle differentiation and muscle organization. However, knocking down Opa1-like, after the expression window of Ewg did not cause mitochondrial or muscle defects. This study identifies a mechanism by which mitochondrial fusion is regulated spatiotemporally by Ewg through Opa1-like during IFM differentiation and growth.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatio-temporal coordination of cell cycle exit, fusion and differentiation of adult muscle precursors by Drosophila Erect wing (Ewg)

The mechanisms of cell cycle exit by myoblasts during skeletal muscle development are poorly understood. Cell cycle arrest is known to be a prerequisite for myoblast fusion and subsequent differentiation. Despite tremendous knowledge on myoblast fusion and differentiation, tissue-specific factors that spatio-temporally regulate the cell cycle exit are not well known. In this paper, we show that...

متن کامل

ERECT WING, the Drosophila member of a family of DNA binding proteins is required in imaginal myoblasts for flight muscle development.

The erect wing locus of the fruit fly Drosophila melanogaster encodes a protein, EWG, that shares extensive homology with the P3A2 DNA binding protein of sea urchin and a recently identified mammalian transcription factor. Loss-of-function erect wing alleles result in embryonic lethality. Viable alleles of erect wing cause severe abnormalities of the indirect flight muscles. We have analyzed th...

متن کامل

The neuronal transcription factor erect wing regulates specification and maintenance of Drosophila R8 photoreceptor subtypes.

Signaling pathways are often re-used during development in surprisingly different ways. The Hippo tumor suppressor pathway is best understood for its role in the control of growth. The pathway is also used in a very different context, in the Drosophila eye for the robust specification of R8 photoreceptor neuron subtypes, which complete their terminal differentiation by expressing light-sensing ...

متن کامل

Normal Mitochondrial Dynamics Requires Rhomboid-7 and Affects Drosophila Lifespan and Neuronal Function

In addition to being energy generators, mitochondria control many cellular processes including apoptosis. They are dynamic organelles, and the machinery of membrane fusion and fission is emerging as a key regulator of mitochondrial biology. We have recently identified a novel and conserved mitochondrial rhomboid intramembrane protease that controls membrane fusion in Saccharomyces cerevisiae by...

متن کامل

The BCL-2–like protein CED-9 of C. elegans promotes FZO-1/Mfn1,2– and EAT-3/Opa1–dependent mitochondrial fusion

The mammalian dynamin-related guanosine triphosphatases Mfn1,2 and Opa1 are required for mitochondrial fusion. However, how their activities are controlled and coordinated is largely unknown. We present data that implicate the BCL-2-like protein CED-9 in the control of mitochondrial fusion in Caenorhabditis elegans. We demonstrate that CED-9 can promote complete mitochondrial fusion of both the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 127 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2014